香焦伊人-香港三级日本三级三级人妇99-香港黄页亚洲一级-香港国产特级一级毛片-闲人吧综合免费888精品-先锋资源亚洲

技術文章您現在的位置:首頁 > 技術文章 > Broadpharm基礎篇什么是點擊化學?What is Click Chemistry?

Broadpharm基礎篇什么是點擊化學?What is Click Chemistry?

更新時間:2023-12-06   點擊次數:602次

Click Chemistry is a chemical reaction between pairs of reagents (named click chemistry reagents) to exclusively react with each other under mild conditions and is effectively inert to naturally occurring functional groups such as amine groups. The term "Click Chemistry" was first coined by Sharpless in 2001 in an effort to design a method to easily synthesize molecules under mild conditions and the product can be easily isolated.


Click Chemistry reactions can be categorized into three generations:

(1) Cu(I)-catalyzed Azide-Alkyne Click Chemistry (CuAAC reactions, Figure 1):

Cu catalyzed azide-alkyne click chemistry reactions diagram


The first generation of Click Chemistry involved the reaction of azide with alkyne catalyzed by Cu(I). The copper catalyst allows for this reaction to be carried out efficiently under mild conditions in water whereas the reaction would require high temperature and high pressure without the copper catalyst. Copper catalyzed Click Chemistry has been found to have the second fastest rate constant of 10-100 M-1s-1.

Due to the toxic nature of copper to living structures and biosystems, copper catalyzed Click Chemistry is not a viable method of carrying out reactions in living systems which has led to the development of the following two generations of Click Chemistry.

(2) Strain-promoted Azide-Alkyne Click Chemistry (SPAAC reactions, Figure 2):

DBCO reagent or BCN reagent can be used to perform Click Chemistry with azide molecules without the need of heavy-metal catalysis.


Strain-promoted Azide-Alkyne Click Chemistry reactions diagram

Figure 2: Strain-promoted Azide-DBCO Click Chemistry


The bond strain created by the bond angle of the cyclooctyne (DBCO or BCN) requires less energy for the cyclooctyne to form the (3+2) cycloaddition which releases enthalpic energy caused by the ring strain of the cyclooctyne. This generation does not require copper as a catalyst and it can be used in cell surface and in vivo labeling. The rate constant is 10-2-1 M-1s-1.


(3) Ligation between tetrazine and alkene (trans-Cyclooctene)

Ligation between tetrazine and alkene (trans-Cyclooctene) diagram


The third generation of Click Chemistry is the ligation between tetrazine with trans-Cyclooctene (TCO). The mechanism for this ligation utilizes ring strain from the trans-Cyclooctene and an inverse Diels-Alder reaction between the electron rich trans-Cyclooctene and the electron poor tetrazine. This ligation has been found to be the fastest generation of Click Chemistry thus far with a rate constant of 1-106 M-1s-1. The reaction can also be carried out in vivo in aqueous solution.

Applications of Click Chemistry

Click Chemistry has been widely used in drug discovery, bioconjugation, labeling, and material sciences in the pharmaceutical and biotech industry due to its mild conditions and high selectivity.

Click Chemistry in Drug Discovery

Click Chemistry is utilized in the formation of ADC linkers in antibody drug conjugates. For example, Trodelvy (Sacituzumab Govitecan), also known as IMMU-132 (Figure 4), is an immune target therapy medicine for triple-negative breast cancer which contains sacituzumab and SN-38 bound with a linker. Click Chemistry is used in the formation of the linker to form a triazole that links SMCC to a PEG8 moiety.


structure of trodelvy

Figure 4: Structure of Trodelvy.


Click Chemistry in Joint Cartilage Therapy

Click Chemistry has also been used in cell-based therapy to treat damage in joint cartilage, relieve pain, and improve function. Autologous chondrocyte transplantation targets apoptotic chondrocytes in cartilage which can be identified by a six amino acid peptide, ApoPep-1, and by binding injected healthy chondrocytes from unaffected cartilage. ApoPep-1 carries a trans-Cyclooctene bound by a PEG Linker to apoptotic chondrocytes which can then bind healthy chondrocytes via Click Chemistry to tetrazine to encourage cartilage regeneration (Figure 5).


Diels-Alder diagram



Figure 5: Inverse Diels-Alder Click Chemistry reaction between TCO and tetrazene for joint cartilage therapy


Click Chemistry Tools

As a leading click chemisty reagent supplier worldwide, BroadPharm provides over 500 high purity Click Chemistry Reagents (tools) and Kits with an array of functional groups such as: Azide, Alkyne, DBCO, TCO, Tetrazine, BCN to empower our clients' advanced research and drug development.



靶點科技攜手Broadpharm,最快一周,為您提供點擊化學試劑。授權代理,正品保證,質量無憂,貨期超快,助力您的研究應用。

靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關村生命科學園北清創意園2-4樓2層

© 2024 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:256418  站點地圖  技術支持:化工儀器網  管理登陸

主站蜘蛛池模板: 香蕉久久久久| 亚洲风情无码免费视频| 亚洲香蕉视频| www.色婷婷.com| 美女黑人做受xxxxxⅹ| 69成人影院| 日本人啪啪| 九九热视频免费| 欧美人妖大啪啪| 99热精品国产麻豆| 亚洲aⅴ男人的天堂在线观看| jzzjzz视频免费播放| 欧美成人免费草草影院视频| 99久久成人| 污影院| 欧美日韩亚洲国内综合网俺| 不良网站在线观看| 日本一区二区免费在线| ai换脸明星专区在线观看| 极品手交handjobtattoo| 奇米影视小说| 92国产福利视频一区二区| 色在线亚洲视频www| 国产美女亚洲精品久久久综合91| 日本大学生xxxxx69泡妞| 欧洲vodafonewifi日本| 91真人毛片一级在线播放| 999热在线精品观看全部| 美女黄a| lubuntu网页版在线| 动漫在线观看h| 性色欲情网站IWWW九文堂| 精品综合久久久久久88小说| 日本最新免费二区| 亚洲国产日韩成人综合天堂| 九九精品免视频国产成人| 国产精品自在欧美一区| 男男18视频免费网站| 日韩日韩日韩手机看片自拍| 国产精品久久久久久影院| 福利视频一区二区牛牛|